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MICROWAVE INSTABILITY CRITERION FOR OVERLAPPED BUNCHES 

King-Yuen Ng 
Fermi National Accelerator Laboratoryl, Batavia, IL 60510 

ABSTRACT 

Debunching can be a method to measure Z/n of a storage ring by 
timing the start of microwave instability. However, if this instabi- 
lity begins to show up when two or more bunches overlap each other, 
the situation becomes more complex, because one is confused of which 
local current and energy spread should be used. An analysis shows 
that exactly the same microwave instability criterion should be used 
as if there is only one bunch. 

INTRODUCTION 

During debunching, the energy spread of a bunch becomes smaller 
and smaller. Eventually, Landau damping fails and microwave instabi- 
lity starts. By measuring the time when instability starts, the Z/n 
of the storage ring can be inferred. However, this instability may 
start when two or more bunches overlap each other. One may wonder 
whether one should take the total energy spread of the bunches or the 
RMS energy spread of one bunch in the Keil-Schnell criterion. Also, 
one is not sure whether the total local current of the overlapped 
bunches or the local current of a single bunch should be used in the 
criterion. This problem is solved in this paper2. 

THE DISPERSION RELATION 

Consider two overlapped Gaussian bunches as shown in Fig. 1. At 
any azimuthal point in the overlap, the dispersion relation is 

1 = -(Aflo/n)2jF'(w)/(An/n-w)dw, (1) 

where Ano/n = [iesw~It(Z/n)/(Zr~2E)]l/2 is the growth without Landau 
damping, ?j the frequency dispersion coefficient, wo the revolution 
frequency, p the velocity of a bunch particle of energy E in unit of 
c, and An/n is the coherent frequency per revolution harmonic of the 
perturbing wave in excess of wo. Note that we have used the total 
local current It which is equal to the sum of the local currents 11 
and 12 of the two individual bunches. The normalized frequency 
distribution function is 

F(w) = (~~)-~{~'lexp[-(w-w1)~/2U~]+Q2exp[-(w-w2)~/20~]}, (2) 

where 0 is the RMS revolution frequency spread of each bunch which is 
considered to be Gaussian, ~1, ~2 are respectively the mean devia- 
tions of revolution frequencies of the bunches from that of a syn- 
chronized particle (we take wl<O and ~2>0). The fraction of each 
bunch in the overlap is represented by Qi = Ii/It, i = 1,2. 
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Let us consider the case 
is real. Then the thresholds 

1 = -(An,/=)2 

when Z/n is imaginary; i.e., (ADO/n)2 
are given by 

JF'(w)/[Re(An/n)-w] dw, (3) 

where Re(An/n) is any of the 3 zeros of F'(w) which are WI, w2 and 
another one in between. Equation (3) can be solved exactly: 

(AD,/=)-2 = -u-2[1-i~~~u~w*(ul)-i~Q2U2w*(u2)], (4) 

where ui = (All/n-wi)/J2u and W(U) is the complex error function. 
Then, at one zero, for example, ul=O, Eq. (4) becomes 

(An,/=)-2 = -o-2[1-2a2Kexp(-K2)Jiexp(t2)dt], (5) 

where K=Aw/k% and Aw=lwI-~21. During debunching, se always have 
ZK>>l; Eq. (5) can therefore be simplified to 

(AR,/=)-2 = -o-2{1-02[1+(u/Aw)2]} = -al/u2+a2/Aw2, (6) 

Figure 1 

Neglecting the last term and putting in the relation between c and 
the RMS energy spread UE of a bunch, we get 

ie~w~It(Z/n)/(2r~2E) = - (T~W$E/E)~/Q~. (7) 

Recalling that 11 = alIt, this is just the same stability criterion 
of a single Gaussian bunch with RMS energy spread OR and local cur- 
rent Il. Similarly, with u2 = 0, we obtain the same stability crite- 
rion with uR and 12 for the second bunch. 

This result can also be visualized as follows. Consider two 
coasting beam with frequencies w,,+01,2 and each has a RMS spread of 
u. Imagine a small perturbing current wave of the form exp(in&int) 
where 6' is the azimuthal angle around the accelerator ring. If the 
coherent frequency D-n(wo+wl) it will set the particles in the first 
beam to oscillate with harmonic n and eventually lead to a growth if 
u is not large enough to destroy the coherency. If o<<lwI-~21, the 
particles in the second beam will not be affected. On the other hand, 
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if l+n(w,+w2), it can only drive a 
growth of harmonic n in the second 
beam while the first one will not 
affected. Thus the stability criteri- 
on applies to each beam individually. 
In debunching, the bunches are long 
and resemble coasting beams so we 
expect the same reasoning applies to 
overlapped bunches as well. 

TEE STABILITY CURVE 

The stability curve in the 
(A&,/n)2-plane is shown in the Fig. 2 
with (w~/~'%)~=lO, Iql=q and nl=a2. 
It wraps around the origin twice in 
two Riemannn sheets as the real part 
of the coherent frequency shift An/n 
increases, the cut being the positive 
imaginary axis. The real coherent 
frequency shift Re(AD/J%o) is marked 
along the curve. For the shake of 
clarity, only one half of the curve is 
plotted. The other half is just an 
mirror image about the cut. The two 
identical intercepts it makes with the 
negative imaginary axis in two the 
different sheets correspond to 
Re(Afl/n) = w1,2 for the two bunches if 
Z/n is capacitive. The intercept it 
makes with the positive imaginary axis 
corresponds to the threshold criterion 
of Eq. (4) using the third zero of 
F'(w) and corresponds to substituting 
-Aw in the stability criterion and is 
therefore (Ar~/2v'%)2 farther away from 
the origin than the two other 
intercepts. any Z/n corresponding to 
a point inside the center region of 
the curve is completely stable. Thus, 
different from the situation of a 
single bunch, a big enough inductive 
Z/n above transition can also lead to 
instability. 
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Figure 2 
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2. For the debunching experiment and other analysis, see K. Y. Ng 
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